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ABSTRACT
INTRODUCTION Alterations in DNA methylation profiles have been associated with 
cancer, and can be influenced by environmental factors such as smoking. A small 
but growing literature indicates there are reproducible and robust differences 
in methylation levels among smokers, never smokers, and ex-smokers. Here, we 
compared differences in salivary DNA methylation levels among current and ex-
smokers (at least 2 years abstinent). 
METHODS Smokers (n=26) and ex-smokers (n=30) provided detailed smoking 
histories, completed the Paced Auditory Serial Addition Test (PASAT), and 
submitted a saliva sample. Whole-genome DNA methylation from saliva was 
performed, and ANCOVA models and a receiver operating characteristic (ROC) 
curve were used for the differences between groups and the performance of 
significant CpG sites. 
RESULTS After controlling for race, age, and gender, smokers had significantly lower 
methylation levels than ex-smokers in two CpG sites: cg05575921 (AHRR) and 
cg21566642 (ALPPL2). Based on the ROC analyses, both CpGs had strong 
classification potentials (cg05575921 AUC=0.97 and cg21566642 AUC=0.93) 
in differentiating smoking status. Across all subjects, the percent methylation 
of cg05575921 (AHRR) and cg21566642 (ALPPL2) positively correlated with 
the length of the last quit attempt (r=0.65 and 0.64, respectively, p<0.001) and 
PASAT accuracy (r=0.29 and 0.30, respectively, p<0.05). 
CONCLUSIONS In spite of the small sample size and preliminary research, our results 
replicate previously reported differences in AHRR hypomethylation among 
smokers. Furthermore, we show that the duration of smoking abstinence is 
associated with a recovery of methylation in ex-smokers, which may be linked 
to a reduced risk of smoking-associated diseases. The association with cognitive 
performance suggests that the hypomethylation of AHRR in saliva may reflect 
systemic exposure to cigarette-related toxicants that negatively affect cognitive 
performance, and should be validated in larger studies.

Tob. Induc. Dis. 2023;21(August):106	 https://doi.org/10.18332/tid/168568

INTRODUCTION
Epigenetics is the study of heritable changes in phenotype without actual changes 
in genotype, and DNA methylation is a common epigenetic signaling tool that 
cells use to regulate gene activation and expression. In mammals, the genome 
is composed of the DNA itself (the sequence of nucleotides) and a system of 
chemical modification (methylation) for instructing cells to express or not 
express certain genes. This is an important component in numerous cellular 
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processes. DNA methylation occurs at the cytosine 
bases of eukaryotic DNA, which are converted 
to 5-methylcytosine by DNA methyltransferase 
enzymes (DNMTs). The altered cytosine residues 
are adjacent to guanine nucleotides, resulting in two 
methylated cytosine residues diagonal to each other 
on opposing DNA strands (CpG sites). Methylation 
of gene regulatory sequences, such as promotor or 
enhancers, represses expression. Demethylation can 
also occur. Understanding this methylation system is 
essential for deciphering how genes are expressed. 
Methylation plays a critical role in embryogenesis and 
tissue-specific differentiation, but methylation (and 
demethylation) continues to occur throughout the 
lifespan. Furthermore, an individual’s environment 
(e.g. nutrition, stress/trauma, toxicant exposure) has 
been theorized to cause epigenetic changes, such as 
DNA methylation. However, the details of this process 
and its physiological role are poorly understood.

Alterations in DNA methylation result in changes 
in gene expression and lead to the development of a 
spectrum of human diseases. Numerous environmental 
stressors have been shown to affect DNA methylation. 
Furthermore, interplay between DNA methylation 
and the environment is recognized as an important 
step in the response to environmental stimuli and 
the onset of disease. Importantly, DNA methylation 
signatures that result from an environmental 
exposure can be detected in saliva, buccal samples, 
and peripheral blood, making them great candidates 
for use as alternative exposure biomarkers. Chronic 
exposure resulting from cigarette smoking has been 
shown to be associated with extensive genome-
wide differences in DNA methylation, in particular, 
the hypomethylation of the cg05575921 loci in the 
aryl hydrocarbon receptor repressor (AHRR) gene1. 
The AHRR gene regulates the aryl hydrocarbon 
receptor (AHR), which is the induction point for the 
xenobiotic pathway responsible for the degradation of 
environmental toxins commonly found in cigarettes. 
The hypomethylation of the AHRR gene shown in 
smokers likely represents increased AHR activation 
of this pathway from smoking exposure2 and smoking 
cessation is associated with more AHRR methylation3. 
Furthermore, the methylation status of cg05575921 
CpG site from both whole blood and saliva have 
the same strong predicting power to predict 
smoking status and daily cigarette consumption4, 

making potential utility in ‘stress-free’ sampling in 
epidemiology studies to determine smoking exposure. 

There is a growing literature on the association 
between DNA methylation profiles and changes in 
brain structure and function5. But to our knowledge, 
there has only been a single published study linking 
tobacco smoking-related differences in blood DNA 
methylation with cognitive function and other 
smoking-related health outcomes6. The study of 
Corley et al.6 referenced the smoking epigenetic scores 
(trained to predict pack-years of smoking) derived 
from the 230 CpGs in the Generation Scotland study, 
and further computed a DNA methylation score as a 
proxy for smoking exposure. They found that among 
older adults (aged 70 years), higher values of smoking-
related methylation scores were associated with the 
duration and intensity of smoking, lower cognitive 
function, and poorer structural brain integrity. 
Furthermore, the results indicated that methylation 
patterns accounted for more variance in smoking-
related morbidities than phenotypic self-reports 
(e.g. smoking status and pack-years). Their results 
underscore the importance of DNA methylation as 
biomarkers of exposure6. 

There are several possible mechanisms by which 
smoking cigarettes can negatively affect brain function 
and cognitive performance, in particular, toxicants 
in cigarette smoke produce oxidative stress and 
inflammation that can result in gray matter atrophy 
and reduced white matter integrity7. In particular, 
polycyclic aromatic hydrocarbons, a neurotoxic 
component of cigarette smoke that has been linked 
with cortical thinning8, induces the expression of 
the AHRR gene9. Smokers have been shown to have 
worse cognitive performance than non-smokers and 
ex-smokers10; however, to what extent cognitive 
performance can improve following smoking cessation 
is unknown. Studies indicate that ex-smokers with 
longer periods of cessation have DNA methylation 
patterns similar to never smokers11, suggesting that 
the methylation of smoking-affected CpG sites could 
serve as a biomarker for the duration and intensity of 
smoking among smokers, as well as the recovery from 
the harmful effects of smoking among ex-smokers. 
Thus, we hypothesized there would be an association 
between smoking-affected DNA methylation levels 
and cognitive performance. The aims of the current 
study are to test: 1) differences in the salivary DNA 
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methylation levels among current and ex-smokers (at 
least 2 years abstinent) to validate previous findings 
from saliva samples; and 2) the association between 
salivary DNA methylation levels and cognitive 
performance.

METHODS
Participants
Current and former tobacco users were recruited 
from the Little Rock, AR community, as part of a 
larger neuroimaging study on distress tolerance. 
The sample included 26 current smokers, 30 ex-
smokers (abstinent from all tobacco/nicotine for 
>2 years). Participants were aged 25–55 years; the 
lower age limit minimized potential age differences 
between groups (considering the ≥ 2-year 
abstinence criterion for ex-smokers), and the upper 
age limit reduced the likelihood of age-related 
changes in cognition. Smokers reported smoking 
≥7 cigarettes/day for ≥2 years and had an expired 
breath carbon monoxide (CO) concentration of ≥5 
ppm (Vitalograph Inc, Lenexa, KS). Smokers were 
excluded if they reported daily use of other tobacco 
products (e.g. little cigars or electronic cigarettes). 
Ex-smokers reported smoking ≥7 cigarettes/day for 
≥2 years, but reported no use of tobacco or nicotine 
for ≥2 years, and had breath CO ≤5 ppm. The ex-
smoker abstinence duration criterion minimized 
the likelihood of future relapse12. Participants were 
excluded if they met any of the following criteria: 1) 
reported serious health problems; 2) had a history of 
head trauma or neurological disorders; 3) currently 
met criteria for an Axis I psychiatric disorder (based 
on a MINI Neuropsychiatric Interview); 4) reported 
heavy drug use or problems with drugs or alcohol 
in the past 6 months (other than tobacco); 5) had 
a positive urine test for drugs (i.e. amphetamine, 
cocaine, methamphetamine, opioids, benzodiazepines, 
barbiturates) or breath test for alcohol; 6) reported 
using cannabis more than 4 days a week or more 
than 2 g per week; 7) were pregnant; 8) were 
using psychoactive medications other than first-line 
medications for depression (e.g. sertraline); 9) had 
less than a 9th grade education; 10) weighed more 
than 350 pounds (due to the weight limit of the MRI 
scanner); and 11) could not achieve 70% accuracy in 
the Paced Auditory Serial Addition Test (PASAT) easy 
practice task during eligibility screening. Participants 

were allowed to play the task up to 3 times to meet 
the criterion. Participants provided written informed 
consent and this study was approved by the University 
of Arkansas for Medical Sciences Institutional 
Review Board and conducted in accordance with 
the Declaration of Helsinki and relevant institutional 
guidelines and policies.  

Procedure
During eligibility screening, participants were 
administered a tobacco use history structured 
interview that assessed the current and lifetime use 
of cigarettes and other tobacco products, including 
the number and duration of cessation attempts, 
DSM-5 tobacco use disorder (TUD) severity scores, 
and the Fagerström test for nicotine dependence 
(FTND). Cigarettes per day, TUD, and FTND scores 
for ex-smokers were based on their past smoking 
behavior. If eligible, participants were scheduled 
for a 2-hour study session, including a 1-hour MRI 
scan and a 1-hour behavioral testing session. The 
results of the MRI and behavioral session will be 
reported elsewhere. Smokers were instructed to 
smoke immediately prior to the study visit and the 
time of their last cigarette was recorded. The PASAT 
was administered during the MRI scan. Following the 
MRI scan, participants submitted a saliva sample for 
DNA testing. Participants were allowed to opt-out of 
submitting a saliva sample and remain in the study. 
Participants were compensated by up to $178 for the 
completion of the study.

Cognitive performance
Cognitive performance was assessed using the Paced 
Auditory Serial Addition Test (PASAT). The PASAT 
is a mental arithmetic task that requires participants 
to mentally sum numbers sequentially as they appear 
onscreen and select the correct sum from an array 
of options before the next number appears. The 
PASAT measures multiple functional domains, such as 
attention, working memory, information processing, 
and psychomotor performance. Participants had 1.5 
sec to make a response. The percent of correct, on-
time responses and the average reaction time for all 
on-time responses were the dependent variables.

DNA extraction
Saliva samples provide a valid and convenient DNA 
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source for exposure measurements. Saliva is a 
natural filtrate of blood that consist of leukocytes and 
endothelial cells, contains small molecules, metals, 
proteins, DNA, and reflects individual exposomes 
including diet, toxins, environmental chemicals, 
psychological health13, immune perturbation14, offering 
‘stress-free’ sampling in epidemiology studies. Using 
the manufacturer’s protocol (PrepIT-L2P Oragene 
DNA Genotek Inc Kanata, Ontario, Canada) saliva 
sample tubes were inverted for gentle mixing and then 
incubated overnight in a C24 Incubator Shaker (New 
Brunswick Scientific, Edison, NJ) at 50°C and 85 rpm. 
A 500 µL aliquot of the saliva sample was transferred 
to 1.5 mL microcentrifuge tube (mct) for DNA 
extraction. A 20 µL aliquot of PrepIT-L2P was added 
to the sample which was mixed and then incubated 
on ice for 10 min. Samples were centrifuged to pellet 
impurities and the clear supernatant was transferred to 
a clean mct. To allow DNA precipitation 600 µL of 95–
100% ethanol solution was added to each sample and 
allowed to incubate for 10 min at room temperature.  
The samples were centrifuged and the supernatant was 
discarded. The pellet was washed in a 250 µL aliquot 
of 70% ethanol solution. The DNA was eluted with 
50 µL of 10 mM Tris-HCL, 1mM EDTA Buffer, pH 
8.0 (Oragene Rockville, MD) and vortexed for 5 s. To 
ensure complete rehydration of the DNA pellet, the 
samples were allowed to incubate in a Thermomixer 
(Fisher Scientific, Hanover Park, IL) at 37°C and 
300 rpm overnight. The concentration of DNA was 
quantified using Quant-iT PicoGreen ds DNA reagent 
kit (Invitrogen/Fisher Scientific, HANOVER PARK, 
IL) in duplicate using a SpectraMax M5 plate reader 
(Molecular Devices, SunnyVale, CA). Samples were 
diluted in TE to 40 ng/µL for a total of 800 ng and 
sent to the UAMS Genomics Core for methylation 
analysis. 

Infinium Methylation EPIC BeadChip analysis
Following bisulfite treatment of 1 µg genomic 
DNA using the EZ DNA Methylation kit (Zymo 
Research, Irvine, CA), the bisulfite-converted DNA 
was hybridized onto the Infinium Methylation EPIC 
BeadChip (Illumina, San Diego, CA), following the 
Illumina Infinium HD Methylation protocol in the 
Genomics Core Facility at UAMS. The Methylation 
EPIC BeadChip covers >850000 CpG sites, and has 
increased genome coverage of regulatory regions 

and higher reproducibility and reliability compared 
to previous versions15. Whole genome amplification, 
hybridization, staining and scanning steps for all 
samples were performed, the Illumina iScan SQ 
scanner was used to create images of the single arrays, 
and the intensities of the images were extracted 
using the Methylation module (v.1.9.0) of the 
GenomeStudio (v.2011.1) software (Illumina). Raw 
intensity data as IDAT files were imported into the 
ChAMP R package11 for the processing and analysis 
of the methylation arrays. The BMIQ algorithm was 
used in the normalization of the data. Probes on a 
blacklist of probes that are known to be cross-reactive 
were removed.

Methylation data analysis
Differentially methylated probes were identified using 
the methylation pipeline in Partek Genomics SuiteTM 
6.6 (Partek Inc., St. Louis, MO). Percent methylation 
values for each CpG site (β-values) and logit-
transformed ratios of methylated to unmethylated 
probe intensities (M-values) were extracted for 
further analysis16. For pattern identification in 
DNA methylation, unsupervised analysis including 
unsupervised hierarchical clustering and Principal 
Component Analysis (PCA) were used. T-tests and 
chi-squared (χ2) tests were performed to evaluate 
differences between smokers and ex-smokers. 
Analysis of covariance (ANCOVA) adjusting for 
race, age, and gender with Fisher’s Least Significant 
Difference contrast method were used to assess the 
differentially methylated CpG sites univariately. The 
resulting p-values were adjusted for multiple testing 
with the false discovery rate (FDR) procedure of 
Benjamini and Hochberg, and significance was 
granted with FDR p<0.05 to identify significantly 
differential DNA methylation. Classical Receiver 
Operating Characteristic (ROC) curve analysis was 
used to evaluate the performance of a single CpG site 
as a biomarker.

Pathway and gene ontology analysis
The genes corresponding to the significant loci were 
analyzed using Ingenuity Pathway Analysis15 (IPA) 
software (Ingenuity® Systems, www.ingenuity.
com). IPA employs information obtained from 
the literature to assemble and extrapolate known 
interactions, signaling, as well as the relationships 
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between the molecules. Biological functions and 
pathways were deemed statistically enriched when the 
FDR adjusted p-values <0.05 in Fisher’s exact test. 
Z-scores and p-values were used to predict potential 
upstream regulators. The p-value tests the probability 
of the genes in the gene list as being regulated by 
an upstream regulator by chance. Network analysis 
was generated de novo based on the mapped CpG 
sites to explore potential molecular events and 
mechanisms affected based on information obtained 
from the literature to assemble and extrapolate known 
interactions, signaling, as well as the relationships 
between these entities.

RESULTS
Demographic characteristics of the study 
participants  
Table 1 shows the demographic characteristics and 
tobacco use histories for smokers and ex-smokers. 
Groups were similar in age, sex distribution, ethnicity, 
and years of education (all p>0.05). However, the 
smoker group had more Black participants (p=0.017). 
Smokers’ current FTND and DSM-5 TUD scores were 

similar to ex-smokers’ past scores (all p>0.05). Ex-
smokers smoked more cigarettes per day (p=0.005), 
although the number of pack-years (i.e. smoking 
duration × number of packs per day) was similar 
between groups (p=0.19). As expected, ex-smokers 
had lower breath CO concentration (p<0.001) and 
the duration of their most recent quit attempt was 
longer than that of smokers’ (p<0.001). Ex-smokers 
quit smoking an average of 8.6 years ago (range: 2–21 
years). PASAT accuracy (% correct) was lower among 
smokers compared to ex-smokers (p=0.023) and 
reaction time was longer among smokers compared 
to ex-smokers (p=0.011).

Differential methylation analysis identified 
between smokers and ex-smokers
First, we aimed to identify differentially methylated 
(DM) CpGs that can distinguish smoking status. From 
our 3-way analysis of covariance (ANCOVA) model 
controlling for race, age, and gender, 9808 CpG sites 
were significantly different between smokers and 
ex-smokers with unadjusted p<0.05 and 122 CpGs 
(p<0.001), but only two CpGs passed multiple-testing 

Table 1. Demographic characteristics and tobacco use histories of smokers and ex-smokers

Characteristics Smokers
(N=26)

mean ± SD

Ex-smokers
(N=30)

mean ± SD

Group difference

p

Age (years) 38.0 ± 9.6 40.3 ± 8.4 0.34

Sex (M/F) 15/11 12/18 0.19

Race (White/Black/Asian/Other) 17/6/1/2 29/0/0/1 χ2(3)=10.2
0.017

Ethnicity (non-Hispanic/Hispanic) 26/0 29/1 0.35

Years of education 13.9 ± 3.2 14.8 ± 2.4 0.24

FTND 5.0 ± 1.9 4.9 ± 2.2 (past) 0.96

DSM-5 TUD 5.9 ± 2.3 6.7 ± 2.2 (past) 0.23

Cigarettes per day 16.5 ± 5.9 22.6 ± 9.1 (past) t(54)=2.9
0.005

Pack-years 21.5 ± 18.8 16.3 ± 10.1 0.19

Duration of most recent quit attempt (days) 96.0 ± 358.0 3144.2 ± 2006.3 t(54)=7.6
<0.001

Breath CO (ppm) 26.6 ± 15.5 2.2 ± 1.3 t(54)=8.6
<0.001

PASAT accuracy (% correct) 72.8 ± 11.9 80.0 ± 10.9 t(54)=2.3
0.023

PASAT reaction time (s) 0.935 ± 0.063 0.880 ± 0.090 t(54)=2.6
0.009

FTND: Fagerström test of nicotine dependence. DSM-5 TUD: DSM-5 tobacco use disorder symptom severity. PASAT: paced auditory serial addition test.
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adjustments (Bonferroni p<0.05, Figure 1). The mean 
F-ratio for each covariate was computed to show the 
significance of different sources of variation in the 

entire data in the ANCOVA model (Supplementary 
file Figure 1). Based on the ANCOVA model, gender 
and race contributed little variation to the model 

Figure 1. Manhattan plot of the chromosomal distribution of differentially methylated CpG sites between 
smokers and ex-smokers. The red horizontal line indicates between group difference (p<0.05)

Figure 2. ROC curve analysis of CpG sites on (a) AHRR (cg05575921) and (b) ALPPL2 (cg21566642). The 
sensitivity (true positive rate) is on the y axis, and the specificity (one minus the false positive rate) is on the 
x axis with the area under the curve (AUC, in blue) of 0.973 (95% CI: 0.928–0.999) for AHRR and 0.932 
for ALPPL2 (95% CI: 0.845–0.987). Box plots represent the percent methylation in β values (y axis) for (a) 
AHRR and (b) ALPPL2 between ex-smokers and smokers. The red horizontal line indicates the optimal cutoff
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compared to random error, while age provided slightly 
higher F-ratio in the model which was adjusted in the 
ANCOVA model.

AHRR, 6p21.33, and F2RL3 have been found to 
be associated with smoking status in several studies17. 
Among the 9808 significant CpGs (p<0.05), AHRR (9 
CpGs), 6p21.33 (1 CpG), and F2RL3 (1 CpG) were 
significantly lower in the methylation levels among 
smokers compared to ex-smokers (Supplementary 
file Table 1). The two CpG sites were cg05575921, 
which binds to the North Shore of AHRR gene on 
chromosome 5, and cg21566642, which binds to the 
CpG island of ALPPL2 gene on chromosome 2. Both 
CpG sites were hypermethylated among ex-smokers 
and hypomethylated among smokers (cg05575921: 
fold change=1.4; unadjusted p=6.67×10-15, Bonferroni 
p=3.02×10-9; cg21566642: fold change=1.5; 
unadjusted p=1.4×10-10, Bonferroni p=6.4×10-5). The 
area under the curve (AUC, Figure 2) for cg05575921 
is 0.97 and for cg21566642 it is 0.93 in ROC analysis 
(Figure 2), both represent high sensitivity and 
specificity to accurately classify the two groups. 

We further computed Pearson’s correlations to 
examine the correlation of the two CpG sites with 
cognitive performance variables. The results in Table 
2 show the correlations and partial correlations 
between percent methylation of cg05575921 (AHRR) 
and cg21566642 (ALPPL2) with smoking history 

and cognitive performance. Percent methylation 
of cg05575921 (AHRR) was positively correlated 
with abstinence duration (r=0.65; p=4.0×10-7, 
Supplementary file Figure 2) and PASAT % accuracy 
(r=0.29; p=0.03), and negatively correlated with 
pack-years in the raw model (r= -0.29; p=0.03); the 
correlation of percent methylation of cg05575921 
(AHRR) and PASAT % accuracy decreased slightly 
when controlling for age, race, and gender (r=0.26; 
p=0.06). The cg21566642 (ALPPL2) was also 
positively correlated with abstinence duration (r=0.64; 
p= 4.4×10-7, Supplementary file Figure 2) and 
PASAT % accuracy (r=0.30; p=0.02), and negatively 
correlated with pack-years (r= -0.36; p=0.006) in the 
raw model; the correlation of percent methylation of 
cg21566642 (ALPPL2) and with abstinence duration 
increased slightly when controlling for age, race, and 
gender (r=0.0.74; p=4.9×10-9). 

Principal component analysis (PCA) modeling of 
the top CpGs (p<0.001) demonstrated separation 
of methylation profiles between smokers and ex-
smokers (Figure 3a), and hierarchical clustering were 
performed based on the top 122 significant CpG sites 
which shows clustering of the samples into two groups 
based on the smoking status (Figures 3a and 3b).  

IPA pathway analysis
In order to understand the potential impact on 

Figure 3. Visualization of the top CpG sites (p<0.001) in (a) principal component analysis and (b) hierarchical 
clustering distinguishing methylation levels between smokers and ex-smokers. To determine the differences in 
the global methylation profiles between smokers and ex-smokers, a 3-way ANCOVA model controlling for race, 
age, and gender was used. There were 9808 CpGs (p<0.05) and 122 CpGs (p<0.001) differentially methylated 
CpGs between smokers and ex-smokers
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the pathways, IPA was queried from the top 122 
CpG sites that were differentially methylated 
(p<0.001) between smokers and ex-smokers. This 
analysis considered direct relationships, focusing 
on interaction networks based on experimentally 
observed human tissues or cell lines. Network analysis 
was generated de novo based on the mapped CpG sites 

to explore potential molecular events and mechanisms 
affected. The network affected by the DM CpGs 
(Figure 4) was associated with cancer, organismal 
injury and abnormalities, cardiovascular disease, 
with the top canonical pathways involved including 
aryl hydrocarbon receptor signaling and molecular 
mechanisms of cancer. 

Figure 4. Network analysis generated based on the top 122 CpGs sites that differentiated smokers and ex-
smokers from the Ingenuity pathway analysis. Red nodes represented CpG sites mapped with increased 
methylation among ex-smokers compared to smokers in this study. Aryl hydrocarbon receptor signaling and 
molecular mechanisms of cancer were the top canonical pathways involved in the network

Table 2. Correlations and partial correlations among all subjects between percent methylation of cg05575921 
and cg21566642, smoking history, and cognitive performance

 
 

AHRR cg05575921 ALPPL2 cg21566642

Model 1 Model 2 Model 1 Model 2

Abstinence duration (days) 0.65** 0.72** 0.64** 0.74**

Pack-years -0.29* -0.33* -0.36** -0.36**

PASAT % accuracy 0.29* 0.26 0.30* 0.29*

PASAT reaction time (s) -0.22 -0.23 -0.22 -0.21

FTND -0.11 -0.12 -0.16 -0.17

DSM TUD 0.06 0.08 0.07 0.07

Model 1: raw model. Model 2: controlling for age, race, and gender. *p<0.05. **p<0.001.
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DISCUSSION
The smokers and ex-smokers in this sample population 
had different patterns of DNA methylation, especially 
on the cg05575921 (AHRR), cg21566642 (ALPPL2) 
CpG sites. The percent methylation of both CpG sites 
negatively correlated with pack-years, and positively 
correlated with cognitive performance accuracy. The 
duration of smoking abstinence is associated with a 
recovery of methylation in ex-smokers, which may 
be linked to a reduced risk of smoking-associated 
diseases. Of the top 122 significantly different CpG 
sites, a pathway analysis indicated an association with 
cancer and cardiovascular disease. 

Tobacco smoking, which is a leading cause of 
disease and death worldwide, is associated with 
extensive genome-wide changes in DNA methylation. 
A small but growing literature indicates that there are 
reproducible and robust differences in methylation 
among smokers, never smokers, and ex-smokers. 
One large-scale study examined DNA methylation 
among smokers and never smokers and identified 
187 replicable CpG sites with differential methylation 
levels18. Among ex-smokers, most of the CpG sites 
with smoker/never-smoker differences had DNA 
methylation comparable to never smokers, and ex-
smokers’ methylation varied according to time since 
quitting. However, 13 of the 187 replicable sites 
remained hypomethylated in ex-smokers, albeit to a 
lesser extent than smokers18. 

Zeilinger et al.18 evaluated whole blood DNA of 
current, former and never smokers from 1793 KORA 
participants using the Illumina 450K BeadChip, 
and identified cg05575921 (AHRR) with having 
the highest level of changes in DNA methylation 
associated with tobacco smoking, together with two 
ALPPL2 CpG sites (cg21566642 and cg01940273). 
McCartney et al.19 reported 234 CpG sites that were 
differentially methylated between 102 smokers and 
418 non-smokers, including four CpGs: cg23079012 
at chromosome 2p25.1, cg05575921(AHRR), 
cg06644428 and cg21566642 (both mapped to 
ALPPL2 at chromosome 2) that were also among the 
top 122 CpGs identified in our study. Furthermore, 
6p21.33 and F2RL3 have been found to be associated 
with smoking status in several studies17, and were 
significantly lower (p<0.05) among smokers 
compared to ex-smokers in our study.

Lastly, a meta-analysis study of DNA methylation 

across 16 cohorts described 2623 CpG sites with 
differential methylation between smokers, never 
smokers, and ex-smokers, suggesting a potentially 
stable biomarker of lifetime exposure to tobacco 
smoke20. This idea was tested in a subsequent large-
scale study using cross-sectional and longitudinal 
data21. A smoking methylation polyepigenetic score 
(a composite measure of 2623 smoking-related 
DNA methylation sites) was applied to participants’ 
DNA methylation profiles and revealed a step-
wise increase in scores from never smokers, to 
ex-smokers, and current smokers. Furthermore, 
scores increased longitudinally according to 
an increasing number of pack-years and scores 
declined longitudinally among individuals who 
quit smoking21. Unfortunately due to small sample 
size, only two CpGs identified in the present study 
passed multiple-testing adjustments (Bonferroni 
p<0.05, Figure 1). Therefore, we did not proceed 
with the development of polygenic scores in this 
study. Altogether, these studies and others indicate 
there are reliable methylation changes related to 
tobacco smoking and smoking cessation. 

In particular, smoking reliably results in the 
hypomethylation of the cg05575921 loci in the AHRR 
gene in both blood and saliva,4 and it takes between 2 
and 14 years for ex-smokers’ DNA methylation levels 
to return to non-smoker levels11. This methylation 
pattern in blood and saliva/buccal cells is a 
reproducible and highly robust biomarker of exposure 
to accurately predict smoking status and smoking 
intensity4 across large-scale studies22. Another large-
scale study examined DNA methylation among 
female smokers, never smokers, and ex-smokers and 
replicated previous work, including hypomethylation 
of AHRR among smokers and ex-smoker methylation 
returning to never-smoker baselines in relation 
to time since quitting. In addition, these results 
indicated that hypo/hypermethylation patterns 
in smokers were correlated with the heaviness of 
smoking1. Smoking cessation has been associated 
with increased methylation of AHRR3. Methylation of 
AHRR also predicts exposures to polycyclic aromatic 
hydrocarbons (PAHs)23, airborne particulate matter24, 
post-traumatic stress disorder in non-smokers25, and 
residence in a disadvantaged neighborhood26. While 
we do not suggest that the methylation of the AHRR 
gene has any direct or causal effects specifically 
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on brain function or cognitive performance, the 
associations between PASAT performance and the 
reduction in methylation levels among ex-smokers 
may be indicative of a broad, physiological recovery 
from the detrimental effects of smoking.

Hypomethylation of the aromatic hydrocarbon 
receptor repressor (AHRR) CpG site (cg05575921) 
has been increasingly used as a robust biomarker 
of smoking history3. In this study, AHRR CpG site 
cg05575921 is correlated with abstinence duration 
and PASAT % accuracy, with the potential to capture 
lifetime smoking history that the traditional biomarker 
of exposure (cotinine, 3-hydroxycotinine) cannot 
achieve for ex-smokers (Supplementary file Figure 
2). The PASAT is a widely used measure of cognitive 
function, and engages a variety of processes such as 
working memory, sustained attention, psychomotor 
reaction time, and mental arithmetic. The value of 
comparing smokers to ex-smokers is to inform the 
extent to which smoking abstinence can be linked 
to physiological benefits. While there may have been 
pre-existing differences between groups in cognitive 
performance, the correlation with DNA methylation 
biomarkers suggests that better performance is 
linked to the duration of smoking abstinence. The 
group differences in cognitive accuracy reported 
here align with both cross-sectional and longitudinal 
cohort studies that have indicated slower or poorer 
cognitive performance among smokers compared to 
ex-smokers and non-smokers27. Chronic cigarette 
smokers typically perform worse on measures 
of attentional control, inhibition, memory, and 
information processing speed compared to age-, 
sex-, and education level-matched non-smokers10. 
However, the extent to which smoking cessation can 
potentially reverse or prevent cognitive-associated 
damage from smoking is unclear, as there are few 
published studies comparing smokers to ex-smokers. 
One such study indicated that, among older adults 
(aged >67 years) enrolled in a smoking cessation 
trial, smokers who were able to maintain abstinence 
for 2 years had better cognitive scores (adjusted for 
baseline) at follow-up than smokers who did not quit28. 
The cognitive scores of smokers who did not quit 
worsened over the 2-year follow-up period. Cigarette 
smoke consists of numerous compounds associated 
with brain toxicity that can result in inflammation, 
atherosclerosis, white matter hyperintensities, and 

brain atrophy, all of which can negatively impact 
cognitive function over time7. While some evidence 
suggests that nicotinic receptor systems return to non-
smoker levels following smoking cessation and ex-
smokers demonstrate better cognitive performance 
compared to smokers, the extent to which tobacco 
cessation mitigates the structural and functional 
effects of tobacco on the brain is largely unknown. 
Recent review on the impact of tobacco on cognition 
suggested chronic smoking reduces hippocampus-
dependent learning, bioelectric dysfunction at the 
cortical and subcortical levels, lower motor cortex 
activation, and that any level of prenatal tobacco 
exposure will affect children’s development29. In this 
pilot study, the PASAT accuracy was lower among 
smokers compared to ex-smokers, and reaction time 
was longer among smokers compared to ex-smokers. 
Nonetheless, it should be also mentioned that the 
main limitation in our study was small sample size 
for each group, which limits statistical precision in 
the analysis models.

Saliva is a natural filtrate of blood that consist 
of leukocytes and endothelial cells, contains small 
molecules, metals, proteins, DNA, and reflects 
individual exposomes including diet, toxins, 
environmental chemicals, psychological health, 
immune perturbation, offering stress-free’ sampling 
in epidemiology studies. Several validation studies 
have demonstrated up to 88.5% concordance between 
DNA methylation profiles from matched whole blood 
and saliva-derived DNA30. Although it has limited 
capability to study cell-type specific epigenetic 
mechanisms linked to disease etiology, saliva samples 
provide a valid and convenient DNA source for 
exposure measurements especially for large-scale 
epidemiology studies and underserved minority 
populations. Philibert et al.6 compared the prediction 
power of AHRR methylation between DNA from 
saliva and blood with convincing results of AUC with 
0.971 from saliva and 0.995 from blood in predicting 
smoking status using ROC. DNA methylation 
markers account for more variance in smoking-
related morbidities than phenotypic self-reports. In 
this study, we intend to highlight DNA methylation 
signatures from saliva as smoking exposure markers 
with the potential to capture lifetime smoking history 
that the traditional biomarker of exposure (cotinine, 
3-hydroxycotinine) cannot achieve for ex-smokers. 
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The correlations of those smoking exposure markers 
with the change of cognitive performance between 
smokers and ex-smokers can serve as a valuable 
complement to self-reported smoking history because 
such biomarkers are not affected by recall bias and 
may be more sensitive measures of smoking-related 
disease risk.

CONCLUSIONS
Altogether, the literature has shown reproducible 
epigenetic biomarkers of smoking exposure. 
Furthermore, it suggests there is a potential for 
DNA methylation to become a powerful new tool for 
investigating the molecular mechanisms by which 
smoking affects cognitive performance and physical 
health in spite of the small sample size and preliminary 
research. Future research with larger sample sizes is 
needed in order to validate the DNA methylation CpG 
sites to serve as biomarkers of long-term smoking 
exposure and smoking cessation, with the potential 
to complement existing methods such as self-reported 
smoking histories and nicotine metabolite levels.
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