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ABSTRACT
Emerging tobacco products such as electronic nicotine delivery systems (ENDS) 
and heated tobacco products (HTPs) have a dynamic landscape and are becoming 
widely popular as they claim to offer a low-risk alternative to conventional 
smoking. Most pre-clinical laboratories currently exploit in vitro, ex vivo, and in 
vivo experimental models to assess toxicological outcomes as well as to develop 
risk-estimation models. While most laboratories have produced a wide range of 
cell culture and mouse model data utilizing current smoke/aerosol generators and 
standardized puffing profiles, much variation still exists between research studies, 
hindering the generation of usable data appropriate for the standardization of 
these tobacco products. In this review, we discuss current state-of-the-art in vitro 
and in vivo models and their challenges, as well as insights into risk estimation of 
novel products and recommendations for toxicological parameters for reporting, 
allowing comparability of the research studies between laboratories, resulting 
in usable data for regulation of these products before approval by regulatory 
authorities.
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INTRODUCTION
In a continuously evolving tobacco product landscape, the availability of 
combustible tobacco products, such as cigarettes, cigars, and waterpipe or hookah, 
and non-combustible tobacco products such as electronic nicotine delivery systems 
(ENDS) or electronic cigarettes and heated tobacco products (HTPs), is rapidly 
increasing. These novel non-combustible products are available in tobacco-derived 
(TDN) and tobacco-free nicotine (TFN) forms, but due to the sparsity of data on 
toxicity, health effects and increased consumption, these products have become 
a significant public health concern. Various TFN e-juices for vape pens and heat 
sticks for IQOS (e.g. LEVIA) are emerging synthetic products evading tobacco 
regulations. These products and devices have been evolving and diversifying 
in their features1-3. Some ENDS resemble traditional cigarettes, pens, or flash 
drives, while others are complex systems with large tanks, heating elements, 
batteries, and customizable parts or power settings. Versatility in the product 
design features and variations in use parameters, including power (wattage) and 
heat customizability influencing inhalation topography, result in the exposure of 
the users to different aerosol chemical profiles4,5. Constituent analyses of smoke 
or aerosols from these products integrated with cell culture and animal studies to 
identify biomarkers of human exposures and disease, have provided initial insight 
into their potential toxicity6-8.
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Studies have shown that the aerosol from non-
combustible products are associated with altered 
immune responses, inflammation, and oxidative 
stress responses similar to combustible products9-22. 
Given the risk of health effects on the respiratory, 
cardiovascular, and systemic effects, many studies 
have used cell lines, primary cell cultures, and animal 
models representing target organ toxicity. 

The current knowledge base indicates the 
considerable toxicity potential of inhalable nicotine 
and tobacco products. Limitations in research 
methodology and the wide range of variables involved 
in studying the effects of these products in vitro and in 
vivo, pose challenges to the scientific and regulatory 
communities. Current risk estimation approaches 
rely on comparative assessments of combustible 
smoke, marginalizing the modified risk posed by the 
emerging products23,24. Standardization of exposure 
paradigm across laboratories is needed for consistent 
and comparable toxicity and risk estimation of 
tobacco products. Standardizing exposure and toxicity 
parameters in vitro and in vivo studies will improve 
their translational relevance to human exposure and 
toxicity. Our goal in this review is to summarize the 
approaches and methodologies used in in vitro and in 
vivo studies to date, and to identify factors that could 
be improved in designing and reporting the relevant 
outcomes of these studies when comparing toxicity 
across emerging tobacco products. Recommendations 
here could further support and enhance the tobacco 
regulatory science framework and strengthen current 
tobacco control efforts. 

CURRENT MODELS FOR INHALATION TOXICITY 
ASSESSMENT OF TOBACCO PRODUCTS
Exposure regimens
Research in tobacco regulatory science focusing 
on investigating the health effects and toxicity of 
inhalable tobacco products, faces many challenges. 
Two of those challenges are: 1) reproducibility of 
the data, and 2) comparison of the data between 
exposure systems and laboratories. When conducting 
experimental studies aimed at simulating real-life 
exposures to inhalable tobacco products, including 
combustible cigarettes, ENDS, waterpipe smoke, and 
HTP, it is critical to use exposure conditions that are 
representative of human users’ behavior. This is a 

first step in improving the translational impact of the 
research. Indeed, the smoking or vaping topography, 
including puff regimes and profiles, are key factors to 
consider when designing and conducting both in vitro 
and in vivo experiments. 

In general, smoke and aerosols are generated 
according to approved puffing regimens, such as those 
from the Federal Trade Commission/International 
Standard Organization (FTC: ISO), Health Canada 
(HC), and the Massachusetts Department of Health 
(MDO) (Figure 1). These regimens depend on 
pressure drop, and puff duration, puff volume, 
puff number, and puff frequency. Most commercial 
cigarette smoke and aerosol generators are pre-
programmed with these acceptable puffing profiles. 
Both International Organization for Standardization 
(ISO) and Cooperation Centre for Scientific Research 
Relative to Tobacco (CORESTA) are available 
resources for tobacco and related tobacco products 
when developing exposure studies. For example, 
ISO compliance includes, 35 mL puff volume, 
2 s puff duration, and 60 s inter puff interval25. 
Whereas in the HC intense (also now ISO intense 
profile, compliance includes, 55 mL puff volume, 2 
s puff duration, 30 s inter puff interval)26. Further, 
adaptations of these profiles are sometimes seen in 
ENDS aerosol generation regimens with puff volumes 
ranging from 45–70 mL and puff duration of 1.8–
4.0 s. The CORESTA Recommended Method No 81 
(CRM 81) or equivalent ISO 20768 (vaping regime: 
puff volume, 55 mL; puff frequency, per 30 s; puff 
duration), is a vaping profile commonly used in ENDS 
toxicity studies27. The greatest hurdle of smoke/
aerosol topography profiles is that no protocol can 
represent all human smoking or vaping behavior28. 
Therefore, for emission characterization and toxicity 
studies, it is imperative to maintain consistent puffing 
profile throughout the experiment. In addition, for 
secondhand smoke generation, usually mainstream 
(15%) and sidestream (85%) smoke are mixed with 
HEPA-filtered air in a dilution chamber. Atmosphere 
for conditioning of tobacco products, for example, 
48 h using a forced air flow for loose cigarettes, is 
recommended (ISO 3402) as combustion of tobacco 
varies based on the conditioning of the cigarettes.  
Further, there is a Beirut-based waterpipe (hookah) 
smoking regime: puff volume, 530 mL; puff frequency, 
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per 15.48 s; puff duration: 2.6 s) 29, which depends 
on the type of tobacco product studied. Overall, 
using these standardized topography parameters 
for a specific inhalable tobacco product is key for 
reproducibility and comparison between exposures 
and studies.

A number of factors, including topography, affect 
the ENDS aerosol physicochemical characteristics 
affecting reproducibility and comparability between 
laboratories5,30. These other factors include the 
e-liquid composition (humectant ratios, propylene 
glycol [PG], glycerin [G] or vegetable glycerin 
[VG], flavoring chemicals, nicotine concentration, 
and other additives), device type (open airflow and 
closed systems), type of coil used (resistance, type of 
metal, wick composition), power (wattage, voltage), 
and heating conditions (temperature). Of important 
consideration is the heating temperature of the 
e-liquid, which will influence both the chemical (e.g. 
presence and concentration of carbonyls) and physical 
(e.g. droplet number and size) profiles of the ENDS 
aerosols. All the factors mentioned above, which are 
innate to the device used, alter the primary emission 
constituents, pyrolytic, and secondary emission 
in both aerosol and gas phases. In addition, the 
presence of nicotine and flavoring chemicals, along 
with their concentration in the e-liquid, will further 
affect the resulting aerosols. Hence, a significant 
challenge related to the toxicity assessment of ENDS 
is due to the rapidly evolving ENDS market, which 
creates a broad spectrum of possible combinations 
of these factors and ENDS-related parameters, 
each potentially producing a unique toxicity. Thus, 
although difficult and complex, keeping these factors 
consistent from one experiment to the next will 
help maintain consistency and allow comparison of 
studies from different laboratories. Similar to the 
combustible reference cigarettes by the University 
of Kentucky Center for Tobacco Reference Products, 
the National Institute of Drug Abuse (NIDA) has 
developed a standard electronic cigarette to be used 
in research settings. However, this NIDA standardized 
device (SREC) could become rapidly obsolete as new 
generations of ENDS devices continually appear on 
the market. This may be why only a few studies have 
reported its use thus far31-38. 

 Heated tobacco/heat-not-burn cigarettes are an 

alternative to traditional combustible cigarettes that 
involve heating tobacco sheets instead of burning 
ground tobacco leaves39. While conventional cigarettes 
produce toxicants through the process of combustion, 
heated tobacco products primarily follow the thermal 
degradation of substrate constituents. These products 
emit less particulate matter, but these devices still 
produce concerning levels of lung irritants and 
toxic chemicals that could impact respiratory health. 
Composition analyses have shown that heat-not-
burn cigarettes generate compounds like acrolein, 
formaldehyde, and benzene, which are hazardous to 
the lungs40. Chronic and acute in vivo studies have 
shown similar inflammatory responses to combustible 
cigarette smoke and emphysema phenotypes in 
mice14,41. Both studies stated serum cotinine levels, 
as an exposure biomarker to tobacco, of 29.5 ng/
mL and 300 ng/mL, which are greater than a non-
smoker level of <1 ng/mL. Further, Bhat et al.29 
stated the PM2.5 concentration (about 197 µg/m3) 
and atmospheric conditions, including nicotine levels, 
which are critical parameters of an animal exposure 
study for translational relevance and reproducibility29. 
More studies are needed to estimate the risk of heated 
tobacco products to understand the chronic effects of 
heated tobacco.

As illustrated here, experimental conditions for 
inhalable tobacco products can differ widely based 
on the selection of the smoking/vaping topography 
as well as the choice of tobacco or vaping products. 
In order to have a more complete understanding of 
the toxicity and health effects of inhalable tobacco 
products, there is a clear need for the scientific 
community to standardize experimental protocols, 
particularly for users’ topography. All parameters 
selected for a specific study should be justified, 
relating to real-life exposure levels, recorded, and 
reported in the resulting publication. This will be 
beneficial for the comparison of studies evaluating 
similar tobacco products being conducted by different 
research groups.

In vitro toxicity testing models 
Although various inhalable tobacco products, 
including cigarettes, ENDS, HTPs, and hookah, have 
established or recommended puffing topography 
profiles to be used in research (cf. section above), 
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there are currently no standardized protocols for the 
use of those inhalable tobacco products when assessing 
in vitro toxicity. This is even though regulatory and 
research agencies have never been more encouraging 
toward in vitro testing to reduce animal studies in 
biological experiments. Studies evaluating the in 
vitro effects of aerosols or smoke are often performed 
in submerged or under air-liquid interface (ALI) 
conditions. As is expected for any model, cell culture 
experiments inherently have factors that need to 
be considered for reproducibility, such as choosing 
the most appropriate cell type/line, passage of the 
cells, confluency of cells during treatment, serum 
deprivation, treatment dose, duration, and handling 
techniques. Meticulous and consistent adherence to 
these parameters are quintessential for achieving a 
successful and robust cell culture experiment. 

Inhalable tobacco products enter the airways via 
the respiratory epithelium, which is the first physical 
barrier at the junction of host–external environment 
interactions42. The selection of the cell type will mainly 
rely on the scientific question being addressed by the 
study; however, both primary cells and cell lines can 
be used, with primary cells more closely mimicking 
in vivo organs and representing greater translational 
impact value. Primary cells can be affected by variation 
between donors as well as by cell passage used43,44. 
Transformed, cell lines have a longer life span, with 
much less variability between passages, and therefore 
can be used for long-term exposure study to inhalable 
tobacco products 43-46. Cells can come from the various 
regions of the respiratory tract, including tracheal, 
bronchial and alveolar epithelial cells47. Co-cultures 
can more accurately represent the lung environment 
compared to the use of monocultures48. While 
conducting in vitro experiments, the use of cancer cell 
lines should be avoided since they may not exhibit 
normal physiological behaviors, including increased 
sensitivity or tolerance to a particular compound49. 
In addition, in exposure models, the selection of the 
exposure dose (e.g. total particulate matter/particle 
size distribution) is important and must reflect the 
expected internal dose at the target organ as there 
is particulate loss after combustion/aerosolization 
to the deposited dose. Selecting exposure doses that 
are much higher or lower than the average exposure 
to a consumer by a product, can impact the cellular 

responses and induce an in vitro response that greatly 
differs from what would be seen in vivo models or in 
humans49,50.

Some studies use cigarette smoke or ENDS aerosol 
extracts in submerged cell culture treatments to 
assess biological responses and cytotoxicity. When 
preparing cigarette smoke extract, standardization 
of the extract is important. The same exact brand, 
type of cigarette, and lot number need to be used 
throughout the experiment since the composition 
of the cigarette varies. Smoke extract preparation 
includes bubbling smoke through media using an 
impinger. The flow rate of bubbling, the number of 
cigarettes used, mixing and aging of the solution, and 
the pH of the solution are key factors determining the 
biological effects induced at the selected treatment 
concentration. Standardization of these aqueous 
extracts for batch-to-batch can be achieved by 
measuring the nicotine concentration of the solution 
by gas chromatography and constant optical density 
for nicotine/tar (260–320 nm), and determining the 
appropriate treatment concentration depending on the 
cell type by performing appropriate dose-response 
relationships51,52.

It is essential to bear in mind that cigarette 
smoke and e-cigarette aerosols are composed of 
both particulate and gas phases51,53-56. Due to the 
complexity of these smoke and aerosol mixtures, 
it is difficult to expose cells to both phases 
simultaneously when using traditional submerged 
cell culture conditions. The use of cigarette smoke 
or e-cigarette aerosol extracts (representing the 
aqueous components) or condensates (representing 
the lipid soluble components) only captures a finite 
fraction (aqueous or lipid soluble) of these complex 
mixtures56,57. Although extracts and condensates of 
inhalable tobacco products represent tools that can be 
used efficiently and have very high reproducibility in 
toxicological testing, they should not be the standard 
for in vitro experiments, as they may not accurately 
reflect (e.g. underestimate or overestimate) the 
cellular responses to the complex mixture of the 
smoke or the aerosol as a whole.  

On the other hand, ALI cell culture models 
provide many advantageous characteristics over 
traditional submerged cell culture conditions 
regarding reproduction of in vivo pulmonary host-
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defence interactions, lung physiology and accurate 
measurement of deposited dose10,12,58-63.  For instance, 
bronchial epithelium grown and differentiated into 
stratified cells (basal cells, goblet cells, ciliated 
cells) at the ALI develop cilia, can form tight 
junctions, and can release mucin as well as pro- and 
anti-inflammatory mediators64,65. This allows for 
recreating human lung physiological interactions 
more closely. In ALI conditions, however, the puffing 
profile, number of puffs, dimensions of the culture 
wells, length of tubing carrying the smoke/vapor, 
temperature, and humidity are some of the factors that 
impact the physicochemical properties of the aerosol 
and ultimately the biological responses induced. 
The state-of-the-art instruments available currently 
provide ALI conditions representing physiological 
gas exchange and maintaining 37°C at the exposure 
site. However, the tubing lengths, surface area, and 
exposure chamber dimensions are not identical from 
one system to another. In addition, most currently 
available in vitro exposure systems do not precisely 
simulate the changes during inhalation of smoke 
aerosols. As smoke/vapor enters nasal passages, it is 
humidified and warmed to 37°C, then travels through 
the trachea, lower respiratory tract, and alveolar 
regions. The hygroscopic properties of the droplets 
from the aerosols and the humidity encountered 
in the respiratory tract will influence the physical 
characteristics of the aerosols once they reach the 
lower airways. For in vitro experiments, cell or tissue 
type and de-identified donor information, including 
donor’s age, sex, race, prior environmental exposures, 
and medical history must be reported. 

Moreover, ALI exposures are time-consuming, and 
replicates can be limited due to the cost and the design 
of the exposure module44,66. Thus, conducting high 
throughput exposures can be a challenge. Therefore, 
some researchers use homemade ALI instruments to 
obtain in vitro data, making comparison of results even 
more challenging, as the puffing profiles and exposure 
conditions may not be identical, leading to changes 
in aerosol composition, characteristics, and biological 
responses. Protocols for ALI cell differentiation, 
maintenance, and exposure to inhalable tobacco 
products are not standardized and thus vary greatly 
between research groups and represent a current 
limitation in tobacco regulatory science research. 

In addition, when cells are grown and differentiated 
at the ALI, aerosolized tobacco products in the form 
of smoke or aerosol can be directly deposited at 
the surface of the cells. The deposited mass at the 
ALI can be measured (estimated) using a crystal 
quartz microbalance, while the amount of smoke or 
aerosol deposited when using submerged conditions 
is challenging to estimate. Moreover, the chemical 
species present in both the particulate and gas phases 
of the smoke or aerosol will interact with the cells 
grown at the ALI. This realistic component cannot 
be recreated in submerged conditions. Therefore, 
substantial differences between estimated exposure 
versus deposited doses for submerge versus ALI 
conditions, may exist. All these variables lead to 
challenges when comparing the in vitro toxicity 
of inhalable tobacco products. It was previously 
demonstrated that the exposure of lung cells at the 
ALI to whole cigarette smoke was a better model to 
recapitulate levels of nicotine/cotinine measured 
in the sputum of smokers than submerged in vitro 
models using cigarette smoke condensates56. 

It is currently unclear whether in vitro experiments 
on inhalable tobacco products are more reliable 
when conducted at the ALI or under submerged 
conditions using extracts or condensates67. For 
the effects of cigarette smoke, the majority of in 
vitro experiments have been conducted on extracts 
and condensates67-70, while few studies have been 
conducted at the ALI71-75. When it comes to ENDS 
aerosols, an increasing number of recent studies on 
ENDS aerosols use ALI exposure conditions10,16,51,76. 
When comparing the toxicity of ENDS products 
using ALI versus submerged exposure conditions, 
overall, biological endpoints seem to follow similar 
tendencies; for instance, IL-8 is increased following 
ENDS exposures, whether in the form of aerosol or 
extracts 9-12,16,61. Whether one experimental condition 
is more sensitive than the other is currently unknown. 
ALI conditions may yield more accurate biological 
data than submerged conditions and, therefore, 
provide more reliable data when doing extrapolations 
for human risk assessment77,78.

Recently, organ-on-a-chip models such as lung-
on-a-chip and multi-organ-chip models have gained 
popularity as alternative methods to animal testing for 
the characterization of smoke and vapor-exposed lung 

https://doi.org/10.18332/tid/188197


Tobacco Induced Diseases 
Review Paper

Tob. Induc. Dis. 2024;22(June):102
https://doi.org/10.18332/tid/188197

6

injury. These models emulate structural, functional, 
and mechanical properties of the alveolar-capillary 
interface, and epithelium-endothelium interface, 
and range from lung, heart, liver, and more79-81. The 
lung-on-a-chip and multi-organ chips are valuable in 
toxicity testing, drug screening, metabolism profiling, 
pharmacokinetics analysis, and human disease 
modeling. Organ-on-a-chip models have advantages 
over animal models, such as predicting human-
specific disease modeling of a particular organ but 
marginalize systemic effects 81-86. Microfluidic organ 
chips can recapitulate multi-tissue interactions and 
responses such as tissue expansion stress. Despite 
the advantages, there are still challenges with these 
models related to the design87,88. The current tobacco 
and ENDS generators targeted for ALI models are not 
entirely compatible with the chip models conforming 
to normal lung physiology. Other in vitro/ex vivo 
models include precision-cut lung slices (PCLS), 
often used with intact alveoli. Crucially, human 
and mouse ex vivo PCLS are increasingly used in 
toxicity testing studies and lung biology. Similarly 
to ALI, in PCLS, donor age-sex matching is crucial 
for reproducibility. Very few studies have used PCLS 
methodologies to assess the pulmonary health effects 
of inhalable tobacco products, hence it is too early 
to determine the appropriateness of these methods 
to assess the health risk associated with the use of 
emerging tobacco products.

Overall, in vitro experimentations are advantageous 
as they allow for mechanistic studies due to controlled 
uniformity of the treatments and less confounding 
factors compared to animal models. They allow for early 
detection of modes of toxic action and adverse effects 
of inhalable tobacco products89,90. One drawback of in 
vitro studies is that establishing the long-term toxicity 
of tobacco products is not feasible when using these 
models49,91. Biological outcomes for in vitro samples 
may include those obtained by ‘omics’ technologies, 
such as genomics, transcriptomics, proteomics, and 
metabolomics responses. Further integrated system 
biology approaches offer wide-ranging overviews of 
changes occurring at the cellular and molecular levels 
following exposure to an inhalable tobacco product. 
Moreover, system biology data are an asset that can 
be used to correlate effects observed in both in vitro 
and in vivo models92. In summary, for in vitro studies, 

performing appropriate toxicological characterization 
of the smoke/aerosol, including mass deposited, dose 
and particle size distribution (Total particulate matter 
(TPM)/particulate matter (PM) concentration and 
particle size), should be recorded and reported. Other 
parameters to record and report include dilution and 
flow rates, in-line quality control methodologies used 
to determine dose delivery and consistency of dose, 
as well as key constituents, such as nicotine and total 
volatile organic compounds concentration. 

In vivo toxicity testing models
A number of parameters, will affect the overall results 
in experiments designed to elucidate the effects of 
tobacco smoke and ENDS aerosols using preclinical 
animal models. Thus, puffing profile, exposure 
dose, duration of exposure, frequency of exposure, 
temperature, humidity, exposure systems, battery 
power, flavoring, product brands, animal species, 
animal age, animal sex, and animal numbers are 
all important when assessing the potential effects 
of smoking and vaping on human health using in 
vivo animal models. It is also important to know if 
the experimental conditions are designed to mimic 
light, medium, or heavy smokers or an experienced 
or novice vaper. The use of standardized reference 
tobacco cigarettes versus commercially available 
cigarettes may also introduce a factor of variability in 
experimental outcome, as will the flavoring component 
of ENDS. An overall variable to note is that the plasma 
half-life of nicotine differs in rodents versus humans 
but has been generally estimated following i.v. or i.p. 
nicotine delivery, not following inhalation exposure. 
These variables, therefore, underscore an urgency 
to provide transparent descriptions of parameters 
utilized and how they may affect risk evaluation. 

The two most commonly used models, for in vivo 
exposure studies in rodents, to examine the effects of 
smoking and vaping, rely on systems designed to allow 
nose-only (NO) or whole-body (WB) exposures to 
smoke or ENDS aerosols. It is important to compare 
the advantages and potential limitations inherent to 
both systems. A merit of the NO systems is, because of 
the small chamber volume, there is less material waste 
and there is avoidance of exposure via routes other 
than inhalation. On the flip side, there is the serious 
concern that animals need to be kept immobilized/
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restrained for the duration of exposure, resulting in 
the generation of stress to the animal93,94. The stress 
will potentially affect the study readouts. Mice of 
different strains, ages and sex may also differ in their 
level of sensitivity to restraint.  This may be reflected 
in measures of body weight changes, observations of 
tremors coupled with higher nicotine concentrations 
in plasma. Due to the considerably smaller size of the 
chamber in the NO exposure system, the saturation 
and equilibrium may likely be reached more rapidly. 
There is also the issue that it is generally difficult to 
control humidity in this system. 

In contrast, in the WB exposure system, the animals 
are not restrained and move freely within the exposure 
cages, and thus, there is the avoidance of imposed 
stress. The WB systems are, therefore, considered more 
suitable for long and repeated exposure experiments. 
However, there needs to be consideration that 
exposure from routes besides inhalation of the test 
material could impact the results. Thus, the deposition 
of particulate material on the fur of the animals or the 
chamber walls must be considered and experimentally 
accounted for when determining total exposures. The 
use of bedding, nesting paper and plastic material in 
cages may also influence the deposition of material 
inside the WB chamber. Generally, because of their 
volume differences, NO and WB exposure chambers 
require significantly different aerosol flow rates, 
making it challenging to perform strictly comparative 
studies using the same experimental design. The 
suitability of the choice of exposure system will also 
be dictated to some extent by the tissue/organ site 
being studied. Thus, differences have been noted in 
the severity of effects in the nose when using WB 
versus NO exposures, depending on the disease 
phenotype and organ system studied95-98. Despite 
these differences, there are reports where comparison 
studies have been performed with informative 
data generated10,13,14,17,19,99-108. One way around the 
conundrum may be to aim to achieve comparable 
aerosol characteristics for exposures, by matching 
TPM concentration with particle size distribution. 
Another approach is to equalize the blood cotinine 
concentration achieved by the different exposure 
protocols.

Gases and vapors are distributed throughout 
the airways upon inhalation. In contrast, particle 

concentration will vary, and their pulmonary 
deposition will depend on particle size, particle 
density, airflow and respiratory tract anatomy of 
the animal species being utilized. Particles may be 
retained at site of deposition or there may be cleared 
by mucociliary activity. It is known and must be 
recognized, that the morphology of the respiratory 
tract is different between humans and rodents. In 
the case of inhalation studies, humans inhale via the 
mouth or the nose, and rodents via the nose only. 
A large variable in the published literature arises 
from the duration of the exposures, irrespective of 
the type of chambers used. Thus, exposures range 
from 30 minutes to weeks or months, with a single 
exposure session or multiple exposures per day, with 
intermittent exposure versus continuous exposures. 
These differences can pose a challenge to data 
interpretation as well as the induction of different 
biological outcomes.  

Overall, whether exposures are conducted via NO 
or WB exposure systems, the TPM concentration 
resulting from the smoke or aerosol generation must 
be measured in the breathing zone of the test animals 
or inside the exposure chamber and recorded, along 
with the temperature and humidity. Levels of nicotine 
inside the exposure chambers are very informative; 
however, if nicotine concentrations cannot be 
measured in the smoke or aerosols, levels of nicotine 
should be measured in the test subjects; for example, 
nicotine/cotinine levels could be measured in serum 
or plasma of rodents for in vivo experiments.

The current state-of-the-art in vitro and in vivo 
models and their relationship in delivering translatable 
data for regulatory purposes are summarized in Figure 
1.

RELATIVE RISK CHARACTERIZATION OF INHALABLE 
TOBACCO PRODUCTS 
Investigating the toxicological effects of tobacco 
products also includes the concept of tobacco harm 
reduction, which signifies ‘minimizing harms and 
decreasing total mortality and morbidity, without 
completely eliminating tobacco and nicotine use’109. 
The premise of tobacco harm reduction is to offer 
cigarette smokers who are unable to quit smoking, 
nicotine delivery systems that produce less harmful 
chemicals, enabling the user to continue their nicotine 

https://doi.org/10.18332/tid/188197


Tobacco Induced Diseases 
Review Paper

Tob. Induc. Dis. 2024;22(June):102
https://doi.org/10.18332/tid/188197

8

exposure when switching entirely to the alternative 
product, and ultimately, reduce the occurrence 
of tobacco-related diseases110. Even though harm 
reduction, based on scientific evidence, should be 
clear and significantly distinct, this area is still heavily 
debated in the scientific community111. Nonetheless, 
developing a unified discourse on tobacco harm 
reduction and relative risk is of importance for 
healthcare providers, enabling them to make science-
based recommendations, and for cigarette smokers 
to make informed decisions111,112. Public health 
authorities in the United Kingdom state that using 
ENDS is approximately 95% less damaging than using 
combustion cigarettes112. The scientific evidence 
supporting this statement is unclear; however, some 
studies conducted by tobacco companies showed 
reduced toxicity in terms of aerosol chemistry, in vitro 
and in vivo data, when comparing e-cigarette aerosols 
to cigarette smoke113-117. Questions to consider are: 
‘How do these alternative inhalable nicotine delivery 

systems prevent dual or poly use of tobacco products, 
as seen in the real world?’ and ‘Is there a relative 
risk modification after completely switching from 
cigarettes to an alternative inhalable nicotine delivery 
system?’. Currently, the weight of evidence supporting 
the claims from cigarette and ENDS companies 
that these alternative inhalable nicotine delivery 
systems are effective tools to quit smoking are scarce, 
inconsistent, and limited118-121.  

One of the crucial questions associated with 
tobacco harm reduction is ‘how to define a “safer” or 
“less harmful” alternative product to cigarettes that 
continues to deliver a satisfactory amount of nicotine 
to the user and provides an overall reduction in 
health risk?’. E-cigarettes and heat-not-burn tobacco 
products are popular examples of such ‘alternative 
tobacco products’, claimed as ‘safe’ (or less harmful) 
alternatives to combustion cigarettes by cigarette and 
ENDS companies. These alternative inhalable nicotine 
delivery systems are positioned at a lower rank on the 

Figure 1. Summarized in vitro and in vivo state-of-the-art methods
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risk related to the tobacco-products continuum, as the 
e-cigarette aerosols and heat-not-burn smoke contain 
lower levels of toxicants than cigarette smoke111,112. 
This may be true in the context of short-term 
exposures; however, this beneficial effect of reduced 
toxicant exposure may not hold true following chronic 
or prolonged exposures to low levels of those harmful 
toxicants. Indeed, the range and intensity of effects 
related to long-term exposures to novel nicotine 
delivery systems are still unknown. Establishing 
whether a tobacco product induces reduced harm 
requires a thorough risk assessment compared to 
combustible cigarettes. When contemplating tobacco 
harm reduction assessment, it is essential to bear in 
mind that: 1) the aerosol chemistry will vary based on 
the user vaping preferences; 2) in vitro data may not 
reflect the complexity of organ and system biology; 
3) in vivo models may not recapitulate the human 
condition in its totality; and 4) human clinical or 
epidemiological data may not analyze a key tissue of 
interest due to ethical and invasiveness limitations122. 
Indeed, e-cigarette aerosols and heated tobacco smoke 
are complex mixtures that contain multiple known 
and unknown constituents, for which the toxicity 
following inhalation is not always established122. 
Research in tobacco regulatory science focuses not 
only on the toxicity of individual components of the 
aerosols or smoke, but also on the whole aerosols 
and smoke, for which the effects of the individual 
components may not be simply additive122. The 
chemical constituents of the ENDS e-liquid, by 
additive or synergistic interactions, induce adverse 
responses and toxicity upon heating. Characterizing 
aerosol/particle and gas-phase constituents of these 
products is important to developing acute toxicity 
estimates of the aerosol mixtures. Hence, identifying 
the key toxicants is essential in comparative toxicity 
assessments.

Therefore, a tobacco harm reduction risk 
assessment that would evaluate the toxicity of 
individual toxicants from e-cigarette aerosols or heat-
not-burn smoke, and not consider the interactions or 
synergy between these chemicals, may overestimate 
the reduced harm of a tobacco product. While in 
vitro and in vivo experimental data can inform on 
the toxicity of a specific product, the exposure dose 
and the biologically internal dose differ, making the 

toxicity estimate challenging. Cell culture models 
allow the study of organ/tissue-specific biomarkers 
of toxicity, inflammation, genotoxicity, dysregulated 
mitochondrial function, and allow for unraveling novel 
pathways identified in mouse models. In addition, 
experimental study designs need to include switching 
behaviors in animal models to better understand the 
relative risk modification after switching. Confirming 
and validating exposure-induced responses in vitro 
and in vivo help extrapolate the findings with great 
translational relevance. However, correlating in 
vitro data to in vivo data has been difficult due to 
the lack of standardization in toxicity testing. On 
the other hand, human data are highly impactful 
in this context, as reduced levels of clinical risk 
markers predictive of tobacco-related morbidity and 
mortality due to the complete switch to alternative 
inhalable nicotine delivery systems, are the ultimate 
evidence of harm reduction. Therefore, although very 
limited, human data carry a greater weight in risk 
assessment. As expected, each research field has its 
advantages and disadvantages. Thus, it is essential 
for the approaches used in tobacco harm reduction 
assessment to encompass multiple spheres, including 
chemical profiles of the aerosols or smoke, in vitro 
and in vivo toxicological evaluation, clinical trials, 
and epidemiological studies111,122. Further, artificial 
intelligence (AI) models are emerging in toxicity 
prediction models. Based on the current databases 
of composition analyses, biomarkers of exposure 
and disease, survey data, in vitro and in vivo data, 
and existing human data, machine-learning toxicity 
prediction models can be created for tobacco toxicity 
outcome models. Taken together, this will lead to a 
comprehensive scientific assessment of relative harm 
reduction and potential increased health benefits.

Implementing a regulatory framework in tobacco 
harm reduction is problematic based on the dynamic 
tobacco landscape and because several factors can 
affect the toxicity of the e-cigarette aerosols or heat-
not-burn smoke. The presence of four generations 
of ENDS devices on the market led to the creation 
of a multitude of ENDS-related variables and 
combinations of those variables. Indeed, numerous 
factors can affect the ENDS aerosol toxicity, including 
but not limited to the type of ENDS device used and 
the operational ENDS device settings (power) applied, 
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which will influence the temperature at which the 
e-liquid is heated. These factors including, the puffing 
topography, and the composition of the e-liquid added 
to the proportion of the ingredients, as well as the 
chemical forms of nicotine (free-base or nicotine 
salt) lead to the thermal degradation of humectants 
and flavors4,123-125. For instance, flavors in e-liquid are 
mixtures of chemicals that impart a unique aroma 
and flavor sensation. However, the same flavor sold 
by different vendors comprises various chemical 
constituents. Therefore, testing more than one brand 
of a specific flavor is important for comparative 
toxicity analysis. When testing a particular product, 
multiple e-liquids of the same brand and flavor from 
different batches should be tested to identify batch-
to-batch differences in chemical composition of the 
liquid and aerosol, as well as in toxicity and biological 
response. This will also allow for the identification 
of the general toxicological profile of a particular 
product. In vitro and ex vivo cultures can be used for 
high throughput toxicity screening of these chemicals 
in submerged cultures or by nebulization in in vitro 
air-liquid interface models. Identifying these chemical 
constituents and the concentrations present in the 
same flavor sold by various vendors, would create a 
database for estimated risk assessment between flavors 
and for predictive toxicity of emerging products. 
Overall, determining a level of harm reduction for all 
ENDS devices is extremely difficult, as some open-
system third-generation ENDS devices emit carbonyls 
at levels orders of magnitude higher than those 
emitted from first, second or fourth-generation ENDS 
devices126-130. At first glance, these data may suggest 
that some generations of ENDS devices provide a 
direction of change towards harm reduction; however, 
even aerosols produced by fourth-generation closed 
system ENDS devices, which contain less and lower 
levels of harmful chemicals than cigarette smoke, can 
induce in vitro and in vivo toxicity 10,16,103,131-133; albeit 
at a lower degree than cigarette smoke. This clearly 
demonstrates the important concept that emission 
reduction, even if it reflects an 80% reduction in the 
exposure level, does not necessarily translate into 
80% safer (less harmful) health outcomes. Together, 
the complexity of ENDS devices and liquids, suggest 
that the toxic effects of ENDS aerosols may not be 
solely due to the toxicants (or carbonyls) emitted 

from the device but may also be due to the chemical 
forms of nicotine (free-base nicotine vs nicotine salt) 
interacting with the other components of the e-liquid. 
Further, as nicotine binding affinity to receptors can 
be affected by these forms (e.g. tobacco derived 
vs tobacco free) this implies that the form/state of 
nicotine can affect the internal dose and its toxicity. 
Therefore, these data clearly show that toxicant 
emissions from ENDS should not be the only criteria 
to establish harm reduction.

As described above, a growing body of evidence 
demonstrates that the regulatory framework for 
tobacco harm reduction should not be based 
on assumptions and basic extrapolations solely 
from aerosol chemistry, in vitro and in vivo 
data9,16,29,102,103,126-129,132-135. Analyzing the toxicity 
of individual components of the aerosols can be 
misleading, as it needs to consider interactions. 
Further, a tobacco product should be tested for its 
acute, sub-chronic, and chronic toxicity to estimate 
the relative risk of exposure-related injury. Long-
term effects associated with chronic exposures to low 
doses of a toxicant may be strikingly different from 
short-term exposures to higher doses of this same 
compound. Lower exposure levels do not necessarily 
equate to safe (or less harmful) exposure levels. 
This is best exemplified by genotoxic carcinogens 
with no threshold dose for stochastic effects, where 
there is a risk of adverse effects even following low-
dose exposures136. Human clinical and epidemiology 
data are the gold standard despite the long data 
collection period involved. Overall, when weighing 
the benefits versus the risk of alternative inhalable 
nicotine delivery systems in tobacco harm reduction, 
tobacco regulatory science researchers should not 
only compare the results to cigarette smoke but 
most importantly, in a public health context, also 
include a group that represents abstinence, i.e. a 
control group that is exposed to clean air, as well as 
a group representing counterparts switching from 
combustible products to ENDS111.

In summary, when estimating the comparative 
toxicity and the relative risk of exposure to tobacco 
products, aerosol chemistry, in vitro, in vivo, and 
clinical plus epidemiology data must be used in 
conjunction. As emphasized throughout this review, 
harmonization and standardization of methods 
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used across tobacco regulatory science research are 
crucial not only to compare studies and to draw firm 
conclusions on the safety and the relative risk of these 
new alternative inhalable nicotine delivery systems, 
but also to establish a regulatory framework for harm 
reduction assessment. 

RECOMMENDATIONS FOR DATA REPORTING
It is important to remember that critical factors related 
to generating the inhalable tobacco product of interest 
will impact the delivery of the smoke/aerosol and its 
toxicity (Figure 1).

For both in vitro and in vivo studies, it is important: 
· To use a standardized topography profile 

representative of human behavior of different 
tobacco products throughout an experiment.

· To characterize the aerosol or the smoke and report 
the key constituents (e.g. nicotine, carbonyls, 
volatile organic compounds). 

· To record and report dilution and flow rates, as well 
as methodologies used to determine dose delivery 
and consistency of dose.

· To perform in-line sampling at the site of exposure 
(breathing zone of the animals) and report nicotine, 
particle size distribution, and TPM levels.

· To measure and report evidence of nicotine 
exposure in cells (nicotine cotinine levels in media) 
or biomarkers (urine serum nicotine/cotinine 
levels) in animals.
This should improve inter-laboratory comparisons 

of data. Further, in addition to difficulties when 
comparing results obtained from different laboratories, 
with recent increased attention on scientific rigor, 
reproducibility, even within the same laboratory, 
can be difficult, thus, intra-laboratory variability also 
exists. This puts the emphasis on the importance of 
reporting in vitro and in vivo exposure conditions as 
well as a biomarker of exposure for each independent 
study conducted within a laboratory.

Future needs for standardized research of inhalable 
tobacco products: 
· A universal ENDS device for each generation (reusable 

and disposable) and heated tobacco products. 
· Standardized e-liquids specifically define 

humectant, flavoring, and nicotine ratios, the form 
and isomer of nicotine, with stable quality control 
values across batches and samples. 

CONCLUSION
This non-systematic review has analyzed the current 
state-of-the-art platforms to assess the in vitro 
and in vivo toxicity of respirable tobacco products, 
and discussed the advantages, disadvantages, and 
challenges that need to be considered to improve 
comparing the studies and data reporting for 
regulatory agencies. Despite these crucial topics 
that were addressed, there are some limitations to 
this review, which include that no meta-analysis 
was performed and a systematic review was not 
conducted, as this is a narrative review on the focused 
topic of challenges related to the toxicity assessment 
of emerging inhalable tobacco products. Thus, it 
is important to bear in mind that the aims and the 
scope of this narrative review were to summarize 
the current research methods and provide insights 
into how to overcome challenges inherent to these 
methods from a regulatory standpoint. Addressing 
these challenges will help generate an initial set of 
toxicological assessment standards for premarket 
authorization (PMTA) of emerging tobacco products, 
which currently lacks scientific standardization. 
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