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ABSTRACT
INTRODUCTION This study aimed to evaluate the metabolomic profiles of urine samples 
obtained from smokers who smoked cigarettes with low and high nicotine content. 
METHODS Three smokers participated in this study. They were given low-nicotine 
(LN) cigarettes, and urine was collected at the end of the third day for the 
LN group. After 1 week of not smoking, they were given high-nicotine (HN) 
cigarettes, and urine was collected for the HN group. Untargeted metabolomics 
and bioinformatic analysis methods were used for urine analysis. 
RESULTS PCA showed a high degree of similarity between samples within the group 
and a large distance between samples between groups, indicating a significant 
difference between the two groups. A total of 1150 significantly differential 
metabolites were selected between the HN and LN groups, such as cotinine 
and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol-N-glucuronide. Two-way 
hierarchical clustering analysis also suggested noticeable differences between 
the two comparison groups Enrichment analysis indicates that the differential 
metabolites between the two groups were mainly enriched in 19 pathways, such 
as the protein kinase G (cGMP)-protein kinase G (PKG) signaling pathway, 
adenosine monophosphate (AMP)-activated protein kinase signaling pathway, 
mammalian target of rapamycin signaling pathway, and Parkinson’s disease. 
CONCLUSIONS Cigarettes with different nicotine content may alter the metabolism 
of smokers. A total of 1150 significantly different metabolites were identified 
between the HN and LN groups, which were mainly enriched in ABC transporters, 
protein kinase G (cGMP)-protein kinase G (PKG) signaling pathway, caffeine 
metabolism, and arginine biosynthesis pathways. 
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INTRODUCTION
Alkaloids are a group of nitrogenous secondary metabolites widely distributed 
in the plant kingdom, particularly in Nicotiana. Among these alkaloids, nicotines 
are the most important, accounting for more than 90% of total alkaloids1. The 
nicotine released by tobacco leaves during smoking enters the brain cells through 
the blood and makes smoking pleasurable. Therefore, nicotine is considered 
the primary active ingredient in tobacco leaves. In 1994, Benowitz et al.2 first 
proposed that reducing the nicotine content of tobacco leaves below the critical 
value of addiction could effectively reduce the dependence of smokers on tobacco. 
The World Health Organization, to reduce smoking rates, recommends reducing 
the nicotine content of cigarette cuts to less than 0.4 mg/g (between 0.2 and 0.3 
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mg/g)3. Recently, the nicotine content in cigarettes 
has been reduced to even lower levels with the 
development of technology4.

It has been reported that the metabolism and uptake 
of nicotine and derived carcinogens may contribute 
to the occurrence of cancers5. Due to the different 
nicotine content of cigarettes, the metabolites of 
nicotine, such as cotinine, vary greatly after smoking. 
As a result, the impact of smoking on the human 
body may differ. To the best of our knowledge, this 
is the first study to evaluate the response of human 
metabolism to cigarette smoking with different 
nicotine concentrations.

Mass spectrometry-based metabolomics is an 
emerging technique for assessing the physiological 
responses related to metabolic disorders, toxic effects, 
and drug action6. Several analytical techniques have 
been used to detect different metabolites. With 
the development of more advanced bioinformatics, 
instrumentation platforms, and spectral databases, 
the applicability of metabolomics to address various 
biologically relevant problems is rapidly expanding7. 
For example, many metabolomics platforms have been 
used to study the patterns and changes in metabolite 

alterations between non-smokers and smokers8. 
Dator et al.9 performed metabolomic profiling of 
urine samples of smokers from two ethnic groups to 
characterize metabolite patterns and differentially 
regulated pathways. Their study found that African 
American smokers have lower glucuronidation 
ability compared to White smokers, and there are 
significant differences in the d-glucuronic acid 
degradation pathway between the two races. In this 
study, we aimed to elucidate the effect of cigarettes 
with different nicotine content on human metabolism 
through untargeted metabolomics. 

METHODS
Study design
Figure 1 shows the overall design of the study and 
provides a detailed explanation of the analysis method.

Cigarettes
All test cigarettes were hand-rolled using tobacco 
leaves of Zhongyan 100 that was obtained from a 
grafting test in the field. The nicotine contents in low-
nicotine (LN) and high-nicotine (HN) cigarettes were 
0.08% and 2.00%, respectively.

Figure 1. Study design and workflow
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Participants
The participants completed a brief questionnaire on 
smoking behavior. The questionnaire included: age, 
smoking years, daily number of cigarettes, dependence 
on nicotine, health status, with underlying diseases or 
not, with special hobbies or not, etc. Male smokers 
who smoked for >5 years, smoked about 10 cigarettes 
a day, had low nicotine dependence, were in good 
health, had no underlying diseases, and had no 
alcohol habit were selected as participants. Three 
were selected to participate in the study. All three 
participants were informed of the experimental 
requirements and signed an informed consent form. 
Information on the three participants is presented in 
Supplementary file Table S1. All three participants 
were males and had been smoking for >10 years. 
This study was approved by the Ethics Committee 
of Henan Agricultural University (ethics number: 
HNND20221118001).

Smoking experiment
Before the experiment, the three participants were 
instructed not to smoke for 1 week. They were given 
low-nicotine cigarettes and asked to smoke only those 
cigarettes for the next 3 days (10 cigarettes per day: 
they smoked one cigarette every 1.5 hours starting 
at 7 am each day.). Urine was collected at the end 
of the third day at 5 p.m. for the LN group. After 1 
week of not smoking, they were given high-nicotine 
cigarettes and asked to smoke only those cigarettes 
for the next 3 days (10 cigarettes per day). Urine was 
collected at 5 p.m. on the third day for the HN group. 
The weight of the tobacco shred was the same for 
each cigarette. Additionally, the number of puffs per 
person and the amount of smoke per puff remained 
the same (each cigarette was prescribed to be smoked 
in 8 puffs with a one-minute interval between two 
puffs and 2 seconds for each puff. The smoke needed 
to fill the mouth). 

Urine collection
The three participants were given guidelines 
regarding the method of urine collection. Urine (30 
mL) was collected at 5 p.m. on the third day and was 
used for liquid chromatography-mass spectrometry 
(LC/MS) analysis. The samples were frozen in liquid 
nitrogen and stored at -80oC.

Urine pretreatment
Prior to the urinary analysis, the stored urine was 
thawed; 100 μL of urine was added to a 1.5 mL 
Eppendorf tube with 20 μL L-2-chlorophenylalanine 
(0.06 mg/mL, methanol solution) (Shanghai 
Hengchuang Biotechnology Co. LTD, Shanghai, 
China) and 300 μL methanol-acetonitrile solution 
(2/1, v/v) (Thermo Fisher Scientific, Waltham, MA, 
USA). The mixture was vortexed for 1 min, followed 
by ultrasonic extraction for 10 min in an ice-water 
bath. The extract was placed at -20oC for 30 min. 
After centrifugation (4oC, 13000 rpm) for 10 min, 
350 μL of the supernatant was collected and dried 
in a freeze-concentration centrifugal dryer (Taicang 
Huamei Biochemical instrument factory, Suzhou, 
China). Next, 300 μL of a methanol–water mixture 
(1/4, v/v) was added to each sample and re-dissolved 
(vortexed for 30 min and ultrasonicated for 3 min). 
The solution was placed at -20oC for 2 h. Next, the 
solutions were centrifuged again (4oC, 13000 rpm), 
and supernatants (150 μL) were collected, filtered, 
transferred to vials for liquid chromatography, and 
stored at -80oC. 

LC/MS metabolomics analysis
An ACQUITY UPLC I-Class Plus ultra-performance 
liquid tandem QE high-resolution mass spectrometer 
(Waters Corporation, Milford, MA, USA) was used 
for the metabolic profiling analysis. An ACQUITY 
UPLC HSS T3 column (100 mm × 2.1 nm, 1.8 μm) 
(Waters Corporation, Milford, MA, USA) was used. 
Solvent A was water (0.1% formic acid) (Thermo 
Fisher Scientific, Waltham, MA, USA). Solvent B 
was acetonitrile (0.1% formic acid) (Thermo Fisher 
Scientific, Waltham, MA, USA). The linear gradients 
were 0 min of 5% B, 2 min of 5% B, 4 min of 30% B, 
8 min of 50% B, 10 min of 80% B, 14 min of 100% B, 
15 min of 100% B, 15.1 min of 5% B, and 16 min of 
5% B. The column temperature was 45oC, and the flow 
rate was 0.35 mL/min. The injection volume was 2 
μL. Ion source electrospray ionization (ESI) was used; 
the sampling mass spectrum signal was collected by 
positive and negative ion scanning.

Data pre-processing
Raw data were subjected to baseline filtering, peak 

https://doi.org/10.18332/tid/196677


Tobacco Induced Diseases 
Research Paper

Tob. Induc. Dis. 2024;22(December):190
https://doi.org/10.18332/tid/196677

4

identification, integration, retention time correction, 
peak alignment, and normalization using Progenesis 
QI10 version 2.3 (Waters Corporation, Milford, MA, 
USA)11. The parameters were as follows: precursor 
tolerance, 5 ppm/10 ppm; product tolerance, 10 
ppm/20 ppm; and production threshold, 5%. The 
compounds were determined based on the isotopic 
distribution, accurate mass number, and secondary 
debris. Qualitative analysis was performed using the 
Human Metabolome Database12, lipid maps 2.313, 
Metabolite Link (METLIN)14, and self-built databases.

The self-built database is an LC-MS/MS database 
established by Ouyi Mass Spectrometry through 
hardware system standardization and based on 
standard samples. The database comprehensively 
covers more than 10000 common and important 
metabolites, including more than 2000 standard 
samples (including RT, MS1, MS2 dimensional 
identification information), mainly including amino 
acids and their derivatives, organic acids and their 
derivatives, carbohydrates and their derivatives, 
organic heterocycles, nucleosides and their 
derivatives, indoles and their derivatives, steroids 
and their derivatives, bile acids and their derivatives, 
acylcarnitine, hemolytic phospholipids, benzene and 
exposure group related metabolites, totaling 13 major 
categories.

After processing the raw data, we removed 
measurement values with ion peak data >50% and 
replaced the missing values with half of the minimum 
value. Qualitative compounds were screened based 
on their qualitative results. The screening standard 
was 36 points (full score: 60), and qualitative results 
below 36 points were deemed inaccurate and deleted. 
Finally, the positive and negative ion data were 
combined in a data matrix.

Data analysis
Unsupervised principal component analysis (PCA) 
was first used to observe the overall distribution of 
samples and the stability of the analysis, followed by 
supervised partial least-squares discriminant analysis 
(PLS-DA) and orthogonal partial least-squares 
discriminant analysis (OPLS-DA) used to distinguish 
the differences in metabolic profiles.

Differential metabolites were screened using 
multidimensional and unidimensional analysis. 

In OPLS-DA, variable importance in projection 
(VIP) was used to detect the influence intensity 
and interpretation ability of the expression mode 
of each metabolite on the classification and 
discrimination of samples, as well as to investigate 
differential metabolites with biological significance. 
The significance of differential metabolites was 
determined using the Student’s t-test. The screening 
thresholds were VIP value >1 and p<0.05, and we 
performed multiple corrections on the results. The 
metabolites of low-nicotine cigarettes were detected 
by two-way hierarchical clustering performed based 
on the expression levels of differential metabolites. 
The specific methods and usage standards mainly 
include the following aspects. 

Data preparation 
Before drawing a heatmap, it is usually necessary 
to preprocess the raw data. For example, when 
conducting cluster analysis of differential protein 
expression levels, the data is standardized using 
Z-score to ensure that data of different magnitudes 
can be compared on the same scale. 

Clustering method 
Horizontal and vertical clustering: simultaneously 
clustering rows (such as genes, metabolites, etc.) 
and columns (such as samples) can help identify 
which features are commonly expressed in a specific 
set of samples; horizontal clustering: clustering only 
for rows (features) while keeping the positions of 
columns (samples) unchanged can help observe 
the changing patterns of each feature under specific 
conditions. 

Color coding 
The color changes in the heatmap reflect the 
differences in numerical values. For the display of 
differential gene fold changes, the degree of change 
in gene expression levels between different samples 
can be represented by the depth of color.

A volcano plot was used to display differential 
metabolites. The linear correlation between the 
two metabolites was determined using the Pearson 
correlation coefficient. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) IDs (Kanehisa, 2000 
#5) of differential metabolites were used for pathway 
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analysis. A hypergeometric test was used for the 
identification of significant pathways15.

RESULTS
Qualitative and quantitative data
The positive and negative ion data were combined 
into data matrix tables (Supplementary file Tables S2 
and S3), which contained all the information extracted 
from the raw data that could be used for subsequent 
analysis. The total number of material peaks was 
21092, including 11807 negative (Supplementary 
file Table S2) and 9285 positives (Supplementary file 
Table S3). There were 8821 metabolites, including 
4634 negative and 4187 positive.

Multivariate statistical analysis
PCA revealed high similarity among the intra-group 
samples. In contrast, the distance between inter-group 
samples was large, indicating significant differences 
between the two groups (Figure 2A). Similar results 
were also identified using PLS-DA (Figure 2B) and 
OPLS-DA (Figure 2C). In PLS-DA, R2Y (cum) and 
Q2 (cum) were 1 and 0.999, respectively, indicating a 
good predictive power. In OPLS-DA, R2Y (cum) and 
Q2 (cum) were 1 and 0.992, respectively.

Differential metabolite screening
Under the threshold, a total of 1150 significantly 
d i f f e ren t i a l  me tabo l i t e s  were  iden t i f i ed 
between HN and LN groups, such as cotinine, 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol 
(NNAL)-N-glucuronide, 1-(5'-phosphoribosyl)-
5 - f o r m a m i d o - 4 - i m i d a z o l e c a r b o x a m i d e , 
1-methylxanthine, 1,2-dihydroxy-3-keto-5-
methylthiopentene, 11-dehydro-thromboxane B2, 
2-hydroxyethanesulfonate, 2-hydroxyfelbamate, 
2-methoxyestrone 3-glucuronide, deoxycholic acid 
3-glucuronide, 2-phenylethanol glucuronide, and 
pregnanediol 3-O-glucuronide (Supplementary 
file Table S4). Therefore, 1-(5'-phosphoribosyl)-5-
formamido-4-imidazolecarboxamide was associated 
with purine metabolism, 1-methylxanthine was 
associated with caffeine metabolism, 1,2-dihydroxy-
3-keto-5-methylthiopentene was involved in 
cysteine and methionine metabolism, 11-dehydro-
thromboxane B2 was related to arachidonic acid 
metabolism, and 2-hydroxyethanesulfonate was 

involved in taurine and hypotaurine metabolism. 
The last three metabolites (deoxycholic acid 
3-glucuronide, 2-phenylethanol glucuronide, and 
pregnanediol 3-O-glucuronide) were associated with 
pentose and glucuronate interconversions.

Figure 2. Results of multivariate statistical analysis: 
A) Results of principal component analysis (PCA); B) 
Results of partial least-squares discriminant analysis 
(PLS-DA); and C) Results of orthogonal partial least-
squares discriminant analysis (OPLS-DA) 

In the PCA analysis, data are mapped to a new coordinate system, and these new 
coordinate axes are the eigenvectors of the covariance matrix of the original data, 
sorted in descending order of eigenvalues. The x-axis (PC1) is the largest eigenvalue 
among these principal components. Blue squares represent high nicotine and red 
triangles represent low nicotine.
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Two-way hierarchical clustering analysis of all the 
differential metabolites and the top 50 differential 
metabolites showed noticeable differences between 
the two comparison groups (Figures 3A and 3B). A 
volcano plot of all differential metabolites is presented 
in Figure 3C. The correlation heatmap of the top 50 
significantly differentially expressed metabolites is 
shown in Supplementary file Figure S1.

Pathway enrichment analysis
A total of 19 KEGG pathways were identified with 
p<0.05, as shown in Figure 4. The 19 pathways 
were as follows: ABC transporters (sulfate, N-acetyl-
D-glucosamine, and L-arginine), protein kinase 
G (cGMP)-protein kinase G (PKG) signaling 
pathway (adenosine monophosphate, guanosine 
monophosphate, and adenosine), caffeine metabolism 
(1-methylxanthine, 7-methylxanthine, theobromine, 

Figure 3. Differential metabolite screening between low-nicotine (LN) and high-nicotine (HN) groups:
A) Heatmap of all significantly differential metabolites between LN and HN groups; B) Heatmap of top 
50 significantly differential metabolites between LN and HN groups; and C) Volcano plot of all differential 
metabolites between LN and HN groups 

Red and blue represent upregulated and downregulated differential metabolites, respectively.
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and caffeine), arginine biosynthesis (oxoglutaric 
acid, L-arginine, ornithine, and argininosuccinic 
acid), mammalian target of rapamycin (mTOR) 
signaling pathway (adenosine monophosphate, and 
L-arginine), purine metabolism (sulfate, guanosine 
monophosphate, and adenosine monophosphate), 
histidine metabolism (oxoglutaric acid, 3-methyl-L-
histidine, and anserine), retrograde endocannabinoid 
signaling [PC (20:0/18:2 (9Z,12Z), PE (18:3 
(9Z,12Z,15Z)/18:0), and PGH2], Parkinson’s 
disease (adenosine monophosphate, rotenone, 
and adenosine), longevity regulating pathway 
(resveratrol, and adenosine monophosphate), 
olfactory transduction (guanosine monophosphate, 
and adenosine monophosphate), arachidonic acid 
metabolism (2,3-dinor-8-iso-PGF2alpha, 11-dehydro-
thromboxane B2,  and 6-ketoprostaglandin 
E1) ,  taurine and hypotaurine metabol ism 
(2-hydroxyethanesulfonate, taurine, and oxoglutaric 
acid), adenosine monophosphate (AMP)-activated 
protein kinase (AMPK) signaling pathway (beta-D-

fructose 2,6-bisphosphate, adenosine monophosphate, 
and AICAR), morphine addiction (adenosine 
monophosphate and adenosine), arginine and proline 
metabolism (L-arginine, ornithine, and creatine), 
tyrosine metabolism [gentisic acid, 5-(L-alanin-3-
yl)-2-hydroxy-cis,cis-muconate 6-semialdehyde, and 
vanillylmandelic acid], D-arginine and D-ornithine 
metabolism (L-arginine and ornithine), and choline 
metabolism in cancer [choline and PC (20:0/18:2 
(9Z,12Z)].

DISCUSSION
To better understand the metabolic differences 
in smokers who smoke cigarettes with low and 
high nicotine content, untargeted metabolomics 
and bioinformatics analyses were used to assess 
the metabolomic profiles of urine samples. A 
total of 1150 significantly differential metabolites 
were identified between the HN and LN groups, 
such as cotinine, NNAL-N-glucuronide, and 
11-dehydrothromboxane-B2, which were significantly 

Figure 4. Bubble diagram of the significant pathways for KEGG enrichment of all significantly differential 
metabolites between LN and HN groups

The size of the circles represents the number of enriched genes. Different colors of the circles represent the p-values. The top five pathways enriched by these differential 
metabolites ABC transporters, kinase G (cGMP)-protein kinase G (PKG) signaling pathway, caffeine metabolism, arginine biosynthesis, and mammalian target of rapamycin 
(mTOR) signaling pathway, are ranked by significance.
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enriched in some metabolism-related pathways, such 
as caffeine metabolism, arachidonic acid metabolism, 
arginine biosynthesis, and arginine and proline 
metabolism, as well as several disease-related 
signaling pathways, such as cGMP-PKG signaling 
pathway, AMPK signaling pathway, mTOR signaling 
pathway, and Parkinson’s disease.

Tobacco-specific nitrosamines in tobacco are potent 
carcinogens, among which 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone (NNK) is the most potent 
and one of the most abundant. NNK is extensively 
metabolized to NNAL, a potent lung carcinogen. 
Additionally, NNAL can be glucuronidated and 
excreted in urine16. Carmella et al.17 confirmed the 
presence of NNAL-N-glucuronide in the urine of 
smokers using LC-ESI-MS/MS. In this study, NNAL-
N-glucuronide was downregulated in the LN group, 
suggesting that low-nicotine cigarettes could decrease 
the levels of potent carcinogenic metabolites.

In the human body, approximately 70–80% of the 
absorbed nicotine is metabolized into cotinine in the 
liver by cytochrome P450 2A618. There is a good dose-
response relationship between plasma cotinine and 
daily cigarette consumption19. Plasma cotinine levels 
have been used as an exposure marker for cigarette 
smoking. Specifically, the concentration of cotinine 
is considerably higher in urine, compared to that in 
plasma20. In this study, cotinine levels decreased in 
the LN group compared with those in the HN group, 
suggesting that cotinine can serve as a biomarker of 
smoking with different nicotine content.

Caffeine is a natural stimulant, and cytochrome 
P450 family 1 subfamily A member 2 (CYP1A2) 
is the main enzyme responsible for caffeine 
metabolism21. CYP1A2 activity is upregulated by 
cigarette smoking, suggesting that cigarette smoking 
may promote caffeine metabolism22. Recently, Liu 
et al.23 reported that smokers exhibited significant 
changes in caffeine metabolism relative to non-
tobacco consumers based on metabolomic analysis. 
Additionally, Liu et al.23 reported that some caffeine 
metabolites were significantly increased in the urine 
of smokers compared with that of non-tobacco 
consumers. In our study, the upregulated metabolites 
of 1-methylxanthine, 7-methylxanthine, and 
theobromine, as well as downregulated caffeine, in the 
HN versus LN groups, resulted in enriching caffeine 

metabolism, suggesting that caffeine metabolism 
exhibited marked changes in the LN group.

It has been reported that smoking is a key 
modifiable risk factor for cardiovascular diseases, 
such as stroke and sudden death24. Thromboxane is an 
important mediator of smoking-induced inflammation 
and has been implicated in the pathogenesis of 
cardiovascular disease25. 11-Dehydrothromboxane-B2 
is a urinary metabolite of thromboxane26. Saareks et 
al.27 assessed the effect of smoking cessation15 on 
urinary 11-dehydrothromboxane-B2 levels and found 
that 11-dehydrothromboxane-B2 levels significantly 
decreased as early as 3 days after smoking cessation. 
In our study, 11-dehydrothromboxane-B2 levels 
increased in the LN group compared with those in 
the HN group, which may be due to the differences 
in metabolic levels between individuals. Our study 
also revealed that 11-dehydrothromboxane-B2 is 
associated with arachidonic acid metabolism. It 
has been reported that smoking is associated with 
alterations in arachidonic acid metabolism28, which is 
consistent with our results.

In addition to the above metabolism-related 
pathways and metabolites, arginine biosynthesis, 
as well as arginine and proline metabolism, were 
significant pathways enriched by some upregulated 
metabolites. Arginine is a building block for protein 
synthesis and is a precursor of small molecules, 
such as urea and nitric oxide. Arginine and proline 
metabolism are common pathways influenced by 
tobacco consumption23. Zhang et al.29 demonstrated 
that exposure to 10% cigarette smoke extract had a 
significant effect on endothelial arginine and proline 
metabolism, resulting in the reduction of intracellular 
arginine, N-hydroxy-l-arginine, and citrulline. In the 
present study, the upregulated arginine biosynthesis 
and arginine and proline metabolism in the HN group, 
suggested that compared to low-nicotine cigarettes, 
high-nicotine cigarettes may have a larger effect on 
arginine biosynthesis and metabolism.

Furthermore, several signaling pathways were 
identified. PKG is the main receptor of the cGMP 
second messenger. cGMP can regulate intracellular 
signaling pathways that control various intracellular 
processes, such as vasodilation, platelet activation, and 
memory formation, by binding to PKG30. In the present 
study, three differential metabolites (adenosine 

https://doi.org/10.18332/tid/196677


Tobacco Induced Diseases 
Research Paper

Tob. Induc. Dis. 2024;22(December):190
https://doi.org/10.18332/tid/196677

9

monophosphate, guanosine monophosphate, and 
adenosine) were found to be involved in the cGMP-
PKG signaling pathway. A recent study reported 
that cigarette smoke exposure could enhance the 
expression of inducible nitric oxide synthase (iNOS) 
and activate nod-like receptor family pyrin domain 
containing 3 (NLRP3) inflammasome, both of 
which contributed to endothelial injury and vascular 
dysfunction. Additionally, this study linked iNOS to 
NLRP3 in cigarette smoke extract-stimulated human 
aortic endothelial cells via the soluble GC (sGC)/
cGMP/PKG/TNF-α converting enzyme (TACE)/
tumor necrosis factor (TNF)-α pathway31. Thus, 
we speculate that the metabolites of low-nicotine 
cigarettes might be beneficial for cardiovascular 
disease through the cGMP-PKG signaling pathway32.

Many pathological conditions associated with 
cigarette smoking are caused by the production of 
reactive oxygen species (ROS). Recently, Morsch et 
al.33 revealed the involvement of ROS, mTOR, and 
AMPK in the cigarette smoke-induced autophagic 
process in the lung, thereby increasing the risk of 
pulmonary diseases. In this study, both the mTOR and 
AMPK signaling pathways were identified. Therefore, 
we speculate that different nicotine contents might 
lead to different risks of pulmonary-related diseases 
by altering the mTOR and AMPK signaling pathways.

A previous study showed a correlation between 
cigarette smoking with a low risk of Parkinson’s 
disease34. Nicotine has been considered to prevent 
the risk of Parkinson’s disease, playing a critical 
role in the regulation of striatal activity mediated 
by the dopaminergic system35. Animal studies have 
shown that nicotine can regulate the transmission 
of dopamine and alleviate the dyskinesia caused by 
L-dopa36. In this study, three differential metabolites 
were involved in the pathway of Parkinson’s disease, 
suggesting that decreasing nicotine content may 
change the nerve conduction of Parkinson’s disease-
related substances.

Limitations
Despite these findings, this study has a few 
limitations. First, the results of the study are deemed 
as exploratory and preliminary. Second, this study 
recruited relatively few volunteers, and all participants 
were male, which limits the generalizability of the 

research results to the female population. Third, 
the identified differential metabolites and related 
pathways were not validated through in vivo and in 
vitro experiments. Further studies with larger sample 
sizes are necessary to confirm our results.

CONCLUSIONS
Based on untargeted metabolomics and bioinformatics 
analyses, 1150 metabolites were identified to be 
differentially expressed between the HN and LN 
groups, such as cotinine, NNAL-N-glucuronide, 
and 11-dehydrothromboxane-B2. These differential 
metabolites were mainly enriched in ABC transporters, 
protein kinase G (cGMP)-protein kinase G (PKG) 
signaling pathway, caffeine metabolism, and arginine 
biosynthesis pathways. 
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